Abstract

The degradation behavior of anode supported solid oxide fuel cells (SOFCs) was investigated as a function of operating temperature and current density. Degradation rates were defined and shown to be mainly dependent on the cell polarization. The combination of a detailed evaluation of electrochemical properties by impedance spectroscopy, in particular, and post-test microscopy revealed that cathode degradation was the dominant contribution to degradation at higher current densities and lower temperatures. The anode was found to contribute more to degradation at higher temperatures. Generally, the degradation rates obtained were lower at higher operating temperatures, even at higher current densities. A degradation rate as low as was observed at and over an operating period of .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.