Abstract
ZnO/polyaniline nanocomposite in core-shell structure was prepared by the synthesis and adsorption of polyaniline chains on the structure of ZnO nanoparticles. Fourier transform infrared and ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction patterns, field emission scanning electron microscopy, and transmission electron microscopy were used to characterize the composition and structure of the nanocomposite. The nanocomposite was used as an active photocatalyst for photodegradation and removal of ampicillin in aqueous solution. UV-Vis spectroscopy studies showed that ZnO/polyaniline nanocomposite absorbs visible light irradiation as well as ultraviolet spectrum, and therefore, it can be photoactivated under visible and ultraviolet lights. The photocatalytic activity of ZnO/polyaniline nanocomposite in degradation of ampicillin molecules in aqueous solution under natural sunlight irradiation was evaluated and compared with that of ZnO nanoparticles and pristine polyaniline. The ZnO/polyaniline core-shell nanocomposite exhibited higher photocatalytic activity compared to ZnO nanoparticles and pristine polyaniline. The effect of operating conditions (pH, ZnO/polyaniline nanocomposite dosage, and ampicillin concentration) in the photocatalytic degradation of ampicillin using ZnO/polyaniline nanocomposite was investigated. The optimum conditions for maximum efficiency of ampicillin degradation under 120 min sunlight irradiation were found as 10 mg L(-1) dosage of ZnO/polyaniline nanocomposite, ampicillin concentration of 4.5 mg L(-1), and solution pH = 5. Under optimum operating conditions, degradation efficiency was reached to 41% after 120 min of exposure to the sunlight irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.