Abstract

Amoxicillin (AMX), one of the micro-amount hazardous pollutants, was frequently detected in environments, and of great risks to environments and human health. Microbial degradation is a promising method to eliminate pollutants. In this study, an efficient AMX-degrading strain, Ads-6, was isolated and characterized. Strain Ads-6, belonging to the genus Bosea, was also able to grow on AMX as the sole carbon and nitrogen source, with a removal of ~60% TOC. Ads-6 exhibited strong AMX-degrading ability at initial concentrations of 0.5–2 mM and pH 6–8. Addition of yeast extract could significantly enhance its degrading ability. Many degradation intermediates were identified by HPLC-MS, including new ones such as two phosphorylated products which were firstly defined in AMX degradation. A new AMX degradation pathway was proposed accordingly. Moreover, the results of comparative transcriptomes and proteomes revealed that β-lactamase, L, D-transpeptidase or its homologous enzymes were responsible for the initial degradation of AMX. Protocatechuate branch of the beta-ketoadipate pathway was confirmed as the downstream degradation pathway. These results in the study suggested that Ads-6 is great potential in biodegradation of antibiotics as well as in the bioremediation of contaminated environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call