Abstract

Alloy 800 is the preferred steam generator (SG) tube materials for CANDU™ reactors and is also used extensively in SGs in some pressurized water reactor (PWR) systems. Degradation of Alloy 800 SG tubing has only been found in a few tubes at a limited number of stations despite the large number of SG tube operating years accumulated to date. Recently, underdeposit corrosion was detected in a few ex-service tubs removed from some CANDU SGs. Pits like wall loss of about 5% to 10% through-wall depth were found in these ex-service tubes. Evidence of intra-tubesheet cracking of Alloy 800 tubes was detected in a few European PWR SGs. There is no degradation in mechanical properties of these ex-service CANDU SG tubes. In addition, the degradation of Alloy 800 tubes observed so far is not a safety issue. However, the findings suggest that Alloy 800 tubing may have some aging degradation susceptibility after many years of service. Whether the degradation of Alloy 800 tubing is due to imperfections in its compositional or metallurgical properties inherent from manufacturing, or due to the aggressive chemistry conditions that should have been precluded by modern chemistry control strategy require clarification. Comprehensive examinations, including metallurgical examinations, orientation imaging microscopy (OIM), surface analyses and electrochemical measurements were performed on the removed ex-service CANDU SG tubes that had some underdeposit corrosion. The results were compared with a reference nuclear grade Alloy 800 tubing and with archive Alloy 800 new SG tubes from several CANDU stations. High-temperature electrochemical tests, scanning vibrating electrode Technique (SVET) measurements as well as C-ring autoclave tests were performed to determine the possible factors leading to Alloy 800 SG tubing degradation. SCC was initiated in a few C-ring specimens in the presence of artificial cold work flaws under simulated acidic SG secondary-side crevices chemistry conditions. OIM and surface analysis were also performed to characterize the degradation initiated in Alloy 800 tubing under the influence of cold work flaws. The possible factors leading to Alloy 800 SG tubing degradation under SG secondary crevices conditions are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.