Abstract

Abstract In the present study, degradation of acetaminophen (ACT) aqueous solution was investigated up to an absorbed γ-irradiation dose of 1000 Gy. The effects of various additives on the degradation efficiency of ACT were also studied. The results showed that ACT degradation was increased with the increase of an absorbed dose. Based on spectrophotometric analysis, 82.5% degradation of the initial ACT concentration (9.98×10−5 M) was easily achieved at an absorbed dose of 1000 Gy. The decay of ACT followed pseudo-first order reaction kinetics at different initial concentrations. The radiation chemical yield (G-value) decreased with the increase of an absorbed dose, however at a specific absorbed dose G-values increased with the increase of ACT initial concentration. The addition of H2O2 in the range of 0.1–0.7% was effective for degradation of ACT. The degradation of ACT was inhibited in both acidic and basic solutions while maximium degradation effiency was acheived at nearly neautral solution pH, 7.6. The degradation process was markedly enhanced under oxidative conditions while strongly restrained under reductive conditions, which suggests the key role of oxidative radicals (˙OH) in the degradation of ACT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.