Abstract
Sewage sludge is frequently applied as fertilizers to cultivated land. However, municipal sewage sludge often contains organic contaminants including nonylphenol (NP), an intermediate from nonionic surfactant degradation. Knowledge about NP degradation in sludge-amended soil is an important prerequisite for adequate risk assessments. In this study, mineralization of 14C-labeled NP in homogenized and nonhomogenized sludge-soil mixtures was investigated. NP was degraded within 38 days in aerobic homogenized mixtures. In nonhomogeneous mixtures containing sludge aggregates, the degradation of NP was retarded and was generally not completed within 3 months (119-126 days). No detectable amounts of NP were transported from the sludge aggregates to the surrounding soil (detection limit: <0.04 mg of NP/kg dw of soil). Oxygen penetration into sludge aggregates was monitored for 50 days with an oxygen microelectrode. An extrapolation of the oxygen data suggested that more than 1 year was required to obtain fully aerobic conditions in a 2-cm sludge aggregate. Since NP is considered persistent in the absence of oxygen, residual amounts of NP may be present in the anaerobic center of aggregates for prolonged periods. The results demonstrate that sludge aggregate size and thus oxygen availability will be a major controlling factor for NP degradation in soil amended with sewage sludge and that the mobility of NP from sludge aggregates to the surrounding soil is negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.