Abstract

The presence of toxic chlorinated compounds in drinking water, generated during the disinfection step in water treatment plants, is of great concern for public health. In the present study, the performance of the UVC/H2O2 process, preceded by zero-valent-copper reduction, was evaluated for degrading 2,4,6-trichlorophenol (TCP). With this aim, the oxidation performed alone or in combination with the pre-reductive step was evaluated regarding TCP concentration over time, removal rate, mineralization, and toxicity to Vibrio fischeri, as well as oxidant dosage and the effect of water matrix. The UV/H2O2 process achieved fast (kobs = 1.4 min-1) and complete TCP degradation, as well as important mineralization (40.4%), with best results obtained for initial H2O2 concentration of 0.056 mmol L-1. Coupling of reductive and oxidative processes intensified contaminant mineralization, due to the synergistic effect of copper ions leached in the reductive process, particularly Cu(I), providing an additional route of H2O2 activation for generating HO• radicals (photo-Fenton-like process). High toxicity removals and increased mineralization could be successfully accomplished by the combined processes even in tap water, which is a clear advantage for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.