Abstract
The aim of this work was to gain insights about the feasibility of chlorinated solvents removal through biostimulated and bioaugmented biological processes in laboratory-scale permeable reactive barriers (PRBs) under anaerobic and aerobic conditions. The experimental plant consisted of two Plexiglas cylindrical columns filled with silica sand and fed with real groundwater contaminated by chlorinated solvents (mainly 1,2-dichloroethane, 1,2-DCA, at a concentration of 20 mg l−1). Column A simulated a PRB containing poly-β-hydroxybutyrate (PHB) powder as electron donor and worked under anaerobic conditions; in Column B an inlet air flow rate ensured aerobic conditions. Both columns were inoculated with dechlorinating bacterial consortia obtained by enrichment cultures from the same contaminated groundwater. Results from Column A showed that PHB can be fermented and used as a slow-releasing carbon source for sustaining reductive dechlorination, as revealed by acetate production up to 267 mg l−1 and 100% 1,2-DCA removal. The microbial community detected in Column A at the end of the experimental period was mainly enriched in sulfate reducing bacteria that could act as both fermenting and dechlorinating agents. Column B showed a slight lower 1,2-DCA removal efficiency (98%) likely related to the establishment of aerobic (co)metabolic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Biodeterioration & Biodegradation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.