Abstract

ABSTRACT The overall objective of this study was to develop cost-effective treatment processes for 1,4-dioxane removal that were safe and easy to scale up. Degradation of 1,4-dioxane was conducted and compared for the first time by heterogeneous photocatalysis and a photo-Fenton-like process under cool white fluorescent light in mild conditions, using two types of commercial nanoparticles―titanium dioxide (TiO2) and nanoscale zero-valent iron (nZVI), respectively. Both types of nanoparticles removed >99.9% of 1,4-dioxane in a short period of time. Hydroxyl radicals (·OH), superoxide radicals (·O2 -), and hydrogen peroxide (H2O2) were detected in both degradation processes; photogenerated holes (h+) were critical in the degradation of 1,4-dioxane by the photocatalytic process using TiO2. 1,4-Dioxane can be degraded at pH 7 in TiO2/light system and at pH 3 in nZVI/light system, and faster degradation of 1,4-dioxane at even higher concentration was achieved in the former system. Increase in light intensity accelerated 1,4-dioxane degradation, which followed first order kinetics in both systems. In wastewater effluent, the removal of 1,4-dioxane was slower than that in deionized water, which likely reflected the complex compositions of the wastewater effluent. Under combined UVA and visible light illumination, a two-stage degradation process was proposed for 1,4-dioxane for the first time by TiO2 nanoparticles; this study also demonstrated for the first time 1,4-dioxane degradation by the photo-Fenton-like process using nZVI. The cost-effective solutions using commercial nanoparticles under fluorescent light developed in this study can be potentially applied to treat water contaminated by high concentrations of 1,4-dioxane in large-scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.