Abstract

The metal halide perovskite nanocrystals (NCs) have attracted much attention because of their excellent optical properties and potential for application in optoelectronic devices. However, their photo- and thermostability are still practical challenges and need further optimization. Here, we have studied the degradation behaviors of CsPbI3 NCs utilized as optical conversion layer in InGaN based blue micro-LEDs in situ. Furthermore, the effects of temperature and light irradiation on perovskite NCs were investigated respectively. The results indicate that both blue light irradiation and high temperature can cause the increased nonradiative recombination rate, resulting in the degradation of perovskite NCs and reduction of the photoluminescence quantum yield (PLQY). Especially in high-temperature condition, both the single-exciton nonradiative recombination rate and the biexciton nonradiative recombination rate are increased, causing the significant reduction of PLQY of perovskite NCs in high temperature environment than blue light irradiation. Our work provides a detailed insight about the correlation between the light irradiation and temperature consequences for CsPbI3 NCs and may help to pave the way toward optoelectronic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.