Abstract

Degradation of organic light-emitting diodes (OLEDs) operated continuously at a constant current density is investigated using photoluminescence techniques. The OLEDs contained the thermally activated delayed fluorescence emitting dopant (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN). OLED degradation proceeds mainly on the basis of excited-state instability of host molecules rather than processes related to 4CzIPN. Additionally, the electrochemical instability of radical cations and anions influences long-term OLED degradation. The formation of exciton quenchers and nonradiative carrier recombination centers acts to reduce OLED luminance. These findings highlight the need for new host material development to fabricate more stable TADF-OLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.