Abstract
One of the most prominent energy storage technologies which are under continuous development, especially for mobile applications, is the Li-ion batteries due to their superior gravimetric and volumetric energy density. However, limited cycle life of Li-ion batteries inhibits their extended use in stationary energy storage applications. To enable wider market penetration of Li-ion batteries, detailed understanding of the degradation mechanisms is required. A typical Li-ion battery comprised of an active material, binder, separator, current collector, and electrolyte, and the interaction between these components plays a critical role in successful operation of such batteries. Degradation of Li-ion batteries can have both chemical and mechanical origins and manifests itself by capacity loss, power fading or both. Mechanical degradation mechanisms are associated with the volume changes and stress generated during repetitive intercalation of Li ions into the active material, whereas chemical degradation mechanisms are associated with the parasitic side reactions such as solid electrolyte interphase formation, electrolyte decomposition/reduction and active material dissolution. In this study, the main degradation mechanisms in Li-ion batteries are reviewed. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.