Abstract

As a typical toxic organophosphate and emerging contaminant, tris(2-chloroethyl) phosphate (TCEP) is resistant to conventional water treatment processes. Studies on advanced oxidation processes (AOPs) to degrade TCEP have received increasing attention, but the detailed mechanism is not yet fully understood. This study investigated the mechanistic details of TCEP degradation promoted by OH by using the density functional theory (DFT) method. Our results demonstrated that in the initial step, energy barriers of the hydrogen abstraction pathways were no more than 7 kcal/mol. Cleavage of the P–O or C–Cl bond was possible to occur, whilst the C–O or C–C cleavage had to overcome an energy barrier above 50 kcal/mol, which was too high for mild experimental conditions. The bond dissociation energy (BDE) combined with the distortion/interaction energy (DIE) analysis disclosed origin of the various reactivities of each site of TCEP. The systematic calculations on the transformation of products generated in the initial step showed remarkable exothermic property. The novel information at molecular level provides insight on how these products are generated and offers valuable theoretical guidance to help develop more effective AOPs to degrade TCEP or other emerging environmental contaminant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.