Abstract

AbstractThe past few years have seen a significant improvement in the efficiency of organometal halide‐perovskite‐based light‐emitting diodes (PeLEDs). However, poor operation stability of the devices still hinders the commercialization of this technology for practical applications. Despite extensive studies on the degradation mechanisms of perovskite thin films, it remains unclear where and how degradation occurs in a PeLED. Electroabsorption (EA) spectroscopy is applied to study the degradation process of PeLEDs during operation and directly evaluates the stability of each functional layer (i.e., charge transporting layers and light‐emitting layer) by monitoring their unique optical signatures. The EA measurements unambiguously reveal that the degradation of the PeLEDs occurs predominantly in the perovskite layer. With finite‐element method‐based device modeling, it is further revealed that the degradation may initiate from the interface between the perovskite and hole transporting layers and that vacancy, antisite, or interstitial defects can further accelerate this degradation. Inspired by these observations, a surface‐treatment step is introduced to passivate the perovskite surface with phenethylammonium iodide. The passivation leads to a drastic enhancement of the PeLED stability, with the operation lifetime increased from 1.5 to 11.3 h under a current density of 100 mA cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.