Abstract
Chlorella biochar modified with boron and copper (B/Cu-BC) was created and used to break down the antibiotic metronidazole (MNZ) through peroxymonosulfate (PMS) activation. The physicochemical properties of B/Cu-BC were analyzed using SEM, BET, FTIR, XRD and XPS. The results showed that the modified Chlorella biochar, which included several oxygen-containing functional groups, exhibited a rise of 7.1 times in specific surface area and a rise of 8 times in pore volume compared to the unmodified variant. Under the optimal conditions, the B/Cu-BC+PMS system removed 86.6 % of MNZ in 90 min. The reaction mechanism of the system was confirmed by Quenching and electron paramagnetic resonance (EPR) experiments. The B/Cu-BC+PMS system was accompanied by SO4•-, •OH, •O2- and 1O2, in which •O2-was the main reactive oxygen species (ROS). The intermediates in the degradation process of MNZ were investigated using HPLC-MS, and two potential degradation pathways of MNZ were suggested. Finally, the toxicology of the intermediates from the MNZ degradation process was analyzed by toxicity estimation software tool. The bioconcentration coefficients and mutagenicity coefficients showed a significant decrease, indicating that the system could efficiently degrade the antibiotic MNZ in an environmentally friendly manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.