Abstract
In this study, a vascular stent made of WE43 magnesium alloy was used as a research object and placed in a special physical simulation device constructed independently. This device provided a platform for the study of the degradation of the stent in a dynamic environment. The simulated body fluid of Hank's buffered salt solution flowing inside it would not only make the stent corroded but also apply cyclic shear stress to it, which get closer to the micro-stress environment in human blood vessels. In addition, by means of computer numerical simulation software, ANSYS Fluent 15.0, the fluid-structure interaction (FSI) model was established to simulate the wall shear stress (WSS) exerted by the flowing blood on stent in the blood vessel. Combined with the results of numerical simulation and physical simulation experiments, the degradation mechanism of magnesium alloy sent in an environment similar to the human blood vessels was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.