Abstract

Diethylene glycol (DEG) is incorporated into poly(ethylene terephthalate) (PET) during industrial synthesis in order to control crystallisation kinetics. DEG is known to be a weak point in the thermal degradation of PET, which is problematic during the recycling of the polymer. Studies on the thermal decomposition of the model polymer poly(diethylene glycol terephthalate) (PDEGT) have been performed using TG, DSC, TVA and spectroscopic techniques. They revealed a degradation behaviour with two distinct steps, where the first step initiates some 100 K below the degradation temperature of PET. The second step is similar to the behaviour of PET. Based on our observations, a new degradation mechanism specific to DEG units is proposed, where random ether groups along the backbone can back-bite and form cyclic oligomers. These cyclic species, containing ether moieties, are evolved at 245 °C and constitute the first of the two steps of degradation observed for PDEGT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.