Abstract
The danger of zearalenone (ZEN) as an endocrine disruptor to humans and the environment has aroused increasing attention. In this study, we implemented the quantum mechanics/molecular mechanics (QM/MM) method to investigate the degradation mechanism of ZEN hydrolase (RmZHD) toward ZEN at the atomic level. The degradation process involves two concerted reaction pathways, where the active site contains a Ser-His-Glu triplet as a proton donor. With the Boltzmann-weighted average potential barriers of 18.1 and 21.5 kcal/mol, the process undergoes proton transfer and nucleophilic-substituted ring opening to form a hydroxyl product. Non-covalent interaction analyses elucidated hydrogen bonding between key amino acids with ZEN. The electrostatic influence analysis of 16 amino acids proposes residues Asp34 and His128 as the possible mutation target for future mutation design of enzyme RmZHD. An in-depth investigation of the protein environment of RmZHD can improve the bioremediation efficiency of endocrine disrupting chemicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.