Abstract

In this study, the post-treatment of biologically treated acrylonitrile wastewater was investigated during UV/H2O2 process. Five contaminants in the effluent were selected as target compounds, including Furmaronitrile (FMN), 3-Pyridinecarbonitrile (3PCN), 1,3-Dicyanobenzene (1,3-DCB), 5-Methyl-1H-benzotriazole (5MBT), and 7-Azaindole (7AID). Under optimal reaction conditions, the UV/H2O2 post-treatment exhibited good performances in destruction of organic compounds and toxicity. The photo-chemical parameters of the target compounds were measured and it was found that 5MBT and 3PCN had fast degradation rate constants under direct UV photolysis. The second-order rate constants of the target compounds with hydroxyl radicals were determined to be in the range of (1.0-5.0)×109M-1s-1 at pH 3.0 and 25°C. A simplified pseudo-first-order steady state (Sim-PSS) model, which considered direct UV photolysis and radical oxidation simultaneously, agreed well with the experimental data from the post-treatment of a biologically treated effluent. High-performance size exclusion chromatography (HPSEC) coupled with diode-array detector (DAD) and fluorescence detector (FLD) analysis revealed that humic-like sub-peak signals from different molecular weights of fluorescent organic matter decreased consistently during the oxidation process, which made humic-like fluorescence exhibit higher correlation with the target compounds' degradation than the spectral indices of UV absorbance at 254nm (UVA254) and protein-like fluorescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call