Abstract
We developed a strategy to make model hyperbranched structure with uniform subchains and controlled locations of cleavable linkages. First, a novel seesaw-type tetrafunctional initiator with one alkyne, one disulfide linkage, and two bromine groups (≡–S–S–(Br)2) was prepared. Using such an initiator, an AB2-type macromonomer (azide∼∼alkyne∼∼azide) with one disulfide linkage at its center was prepared via successive atom transfer radical polymerization (ATRP) and azidation substitution reaction, where ∼∼ represents polystyrene chains. Further interchain “clicking” coupling between the azide and alkyne groups on the macromonomers led to model hyperbranched polystyrenes with uniform subchains and controllablly located cleavable disulfide linkages. The 1H nuclear magnetic resonance spectra, Fourier transform infrared spectroscopy, and size exclusion chromatography with a multiangle laser light scattering detector confirmed the designed degradable hyperbranched structure. Armed with this novel sample, we studi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.