Abstract

Levonorgestrel (LNG) and quinestrol (QUN) are typical endocrine disruptors that enter the soil via sewage irrigation and sludge return. However, the fates of both compounds in soil are not well-understood. Laboratory microcosm studies were conducted to fill the gap of understanding of LNG and QUN behavior in soils. High values of goodness-of-fit indices (GFIs) were obtained using the double-first-order in parallel (DFOP) model and the single-first-order (SFO) model to fit the degradation kinetics of LNG and QUN in soils, respectively. The end-points (DT50 and DT90) of LNG and QUN were positively correlated with soil total organic carbon (TOC). Soil water content and temperature were observed to be critical factors in degradation of LNG and QUN. The degradation rates of LNG and QUN were very slow under sterile and flooded conditions, indicating that the aerobic microbial degradation was dominant in the degradation of LNG and QUN. Moreover, major transformation products were identified, and biodegradation pathways of LNG and QUN were proposed. The present study is expected to provide basic information for ecological risk assessment of LNG and QUN in the soil compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.