Abstract
The antiepileptic drug carbamazepine (CBZ) is one of the most frequently detected human pharmaceuticals in wastewater effluents and biosolids. Soil is a primary environmental compartment receiving CBZ through wastewater irrigation and biosolid application. In this study, we explored the transformation of CBZ to biologically active intermediates in soil. Both (14)C labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to track transformation kinetics and identify major degradation intermediates. Through 120 days of incubation under aerobic conditions, mineralization of CBZ did not exceed 2% of the spiked rate in different soils. Amendment of biosolids further suppressed mineralization. The fraction of non-extractable (i.e., bound) residue also remained negligible (<5%). On the other hand, CBZ was transformed to a range of degradation intermediates, including 10,11-dihydro-10-hydroxycarbamazepine, carbamazepine-10,11-epoxide, acridone-N-carbaldehyde, 4-aldehyde-9-acridone, and acridine, of which acridone-N-carbaldehyde was formed in a large fraction and appeared to be recalcitrant to further degradation. Electrocyclization, ring cleavage, hydrogen shift, carbonylation, and decarbonylation contributed to CBZ transformative reactions in soil, producing biologically active products. The persistence of the parent compound and formation of incomplete intermediates suggest that CBZ has a high risk for off-site transport from soil, such as accumulation into plants and contamination of groundwater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.