Abstract
Degradation in tensile and creep properties has been investigated for 2·25Cr–1Mo steel, after long term service at 577°C for 1·9 × 105 h. Creep tests were carried out at 550–690°C for up to about 10 000 h for the long term serviced material. The results are compared with those for virgin material tested for up to 100 000 h. The creep rupture time is shorter but creep ductility is larger for the long term serviced material than for the virgin material at high stress and short time conditions. The difference between the two materials becomes decreased with decreasing stress and increasing time. Microstructure evolution during long term service causes a softening and promotes dynamic recovery or recrystallisation during subsequent creep, which accelerates the onset of acceleration creep. This results in a higher minimum creep rate and a shorter rupture time for the long term serviced material than for the virgin material. The deviation from Monkman–Grant relationship is correlated with a decrease in total elongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.