Abstract
Reduction to the mechanical properties of fiber-reinforced polymer composites occurs when the material is exposed to radiant heat flux and compressive loading. A thermo-mechanical model was developed to predict the compressive strength and the failure time of silica fiber-reinforced phenolic composites. The coupling heat and mass transfer processes, generation of pyrolysis gases, and their subsequent diffusion process were considered in the model. The thermal softening, thermal decomposition of the matrix material, and phase transition of the reinforced fibers, which reduce the strength of the material, were also taken into account in the formulation of the model. Pyrolysis kinetics of phenolic resin, volume fraction of phase component, temperature profile, compressive strength, and time-to-failure of silica/phenolic composites were predicted using the developed model. The calculated temperature-dependent strength curve was compared with the experimental results measured by a high-temperature compression testing, and the agreement is good. The material fracture morphology was analyzed for silica-phenolic composite specimen after high-temperature compression testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.