Abstract
Photopolymerizable poly(ethylene glycol) (PEG) hydrogels offer a platform to deliver cells in vivo and support three-dimensional cell culture but should be designed to degrade in sync with neotissue development and endure the physiologic environment. We asked whether (1) incorporation of degradation into PEG hydrogels facilitates tissue development comprised of essential cartilage macromolecules; (2) with early loading before pericellular matrix formation, the duration of load affects matrix production; and (3) dynamic loading in general influences macroscopic tissue development. Primary bovine chondrocytes were encapsulated in hydrogels (n = 3 for each condition). The independent variables were hydrogel degradation (nondegrading PEG and degrading oligo(lactic acid)-b-PEG-b-oligo(lactic acid) [PEG-LA]), culture condition (free swelling, unconfined dynamic compressive loading applied intermittently for 1 or 4 weeks), and time (up to 28 days). The dependent variables were neotissue deposition through biochemical contents, immunohistochemistry, and compressive modulus. Degradation led to 2.3- and 2.9-fold greater glycosaminoglycan and collagen contents, respectively; macroscopic cartilage-like tissue formation comprised of aggrecan, collagen II and VI, link protein, and decorin; but decreased moduli. Loading, applied early or throughout culture, did not affect neotissue content in either hydrogel but affected neotissue spatial distribution in degrading hydrogels where 4 weeks of loading appeared to enhance hydrogel degradation resulting in tissue defects. PEG-LA hydrogels led to macroscopic tissue development comprised of key cartilage macromolecules under loading, but hydrogel degradation requires further tuning. PEG-LA hydrogels have potential for delivering chondrocytes in vivo to replace damaged cartilage with a tissue-engineered native equivalent, overcoming many limitations associated with current clinical treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.