Abstract

AbstractSurface reactions occur on the ZnS:Cu,Al,Au surface during prolonged electron bombardment forming a non‐luminescent ZnO layer with consequent loss in cathodoluminescence (CL) intensity. The layer is formed according to the electron‐stimulated surface chemical reaction (ESSCR) mechanism. There is a direct correlation between the power emitted as luminescence and the energy loss of the electron beam. The electron energy loss within the ZnS was determined by using the Monte Carlo algorithm CASINO, which is a publicly available code. By determining the energy loss, the influence of a non‐luminescent ZnO layer of varying thickness on a ZnS substrate on the CL intensity was simulated. These results were compared also with previous calculations that were based on the results of experiments done on the transmission of electrons through thin films. The energy loss within the ZnS as function of the ZnO thickness was determined at beam voltages of 1, 2 and 5 keV. The results obtained correlate with experimental CL measurements of the phosphor degradation during electron bombardment. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.