Abstract

Cellulose acetate (CA) is widely used in cigarette filters and packaging films, but due to its acetylation, it is difficult to degrade in the natural environment, and the problem of pollution has become a serious challenge. Understanding the degradation behavior and performance of CA in different environments is the basis and prerequisite for achieving its comprehensive utilization and developing efficient degradation methods. In this study, we investigated the degradation performance of CA in different aqueous environments to evaluate the effects of pH, salinity and microorganisms on CA degradation. The CA tows and films were immersed in HCl, NaOH solution, river water, seawater or homemade seawater for 16 weeks and the degradation mechanism was investigated by the changes in weight loss rate, degree of substitution, hydrophilicity, molecular structure and surface morphology. The results showed that the degradation of CA tow and film were the fastest in NaOH solution; the weight loss rates after 16 weeks were 40.29% and 39.63%, respectively, followed by HCl solution, and the degradation performance of CA tow was better than that of film. After 16 weeks of degradation in river water, seawater and homemade seawater, all the weight loss rates were less than 3%. In summary, this study illustrated that the environmental acidity, basicity and high concentration of inorganic salts had a critical promotion effect on the non-enzymatic hydrolysis of CA, whereas the number and type of microorganisms were the key factors affecting the biodegradation of CA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.