Abstract
The degradation kinetics of Langmuir monolayer films of a series of biodegradable polyesters has been studied to investigate the effect of degradation medium, alkalinity and enzymes. The degradation behavior of polyester monolayers strongly depended on both degradation medium and surface pressure. As the surface pressure was increased, the degradation rates of poly( l-lactide) (PLLA) and poly[( R)-3-hydroxybutyrate] (P(3HB)) increased in both degradation media. When monolayers were exposed to an alkaline subphase, the degradation of PLLA monolayers occurred at relatively low surface pressures; the PLLA monolayers were hydrolyzed at pH 10.5 regardless of surface pressure, while the alkaline degradation of P(3HB) monolayer occurred over a constant surface pressure of 7 mN/m at pH 11.8. These results have been explained by the difference in hydrophilic/hydrophobic balance of the polymers; PLLA is more hydrophilic than P(3HB). In contrast, the enzymatic degradations of both polymer monolayers occurred at higher constant surface pressures than those of the alkaline treatment; 7 mN/m for PLLA and 10 mN/m for P(3HB). This behavior was attributed to the enzymes being much larger than the alkaline ions: the enzymes need a larger contact area with the submerged monolayers to be activated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.