Abstract

Films containing soy protein and wheat gluten were exposed to simulated farmland soil mix over a period of 30 days and monitored for degradation. The simulated farmland soil mix (topsoil/sand/Sunshine compost/vermiculite, 59:6:25:10, wt %) was mixed and stored at ambient humidity (48-55%) and temperature (20-24 degrees C); the soil mix was constantly maintained at 15% moisture by weight. Research focused on evaluating the effectiveness of gluten and cysteine additions on biodegradable behavior in the simulated farmland soil conditions. The four types of films, soy protein (S:G 1:0); soy protein with cysteine addition (S:G 1:0 + CYS); soy protein-wheat gluten (S:G 4:1); and soy protein-wheat gluten with cysteine addition (S:G 4:1 + CYS), were prepared at pH 7. 0 for degradation studies. Soy protein-gluten film rapidly degraded with 50% weight loss in about 10 days and with up to 95% weight loss in 30 days. Tensile strength and elongation of all soy protein-gluten films significantly decreased in 3 days. However, cysteine addition delayed the degradation rate of soy protein-gluten films. Soy protein-wheat gluten film disintegrated after 20 days in the simulated farmland soil environment. These results suggest that wheat gluten and cysteine addition to soy protein-based films could delay degradation rates due to their high disulfide contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.