Abstract

MgZnCa-based alloys have great potential as implant materials due to their non-cytotoxicity, ease of degradation in the human body, and a low Young's modulus close to that of bone. However, there are few reports on their long-term degradation behavior and the mechanical properties resulting from degradation. This study thus aims to explore the long-term degradation behavior and mechanical strength of Mg60Zn35Ca5 and Mg67Zn28Ca5 bulk metallic glass (BMG) and its composites with Ti particles (BMGCs) before and after immersion in simulated body fluid (SBF). Rods of Mg60Zn35Ca5 and Mg67Zn28Ca5 BMG and their corresponding composites BMGCs have been prepared through an induction melting and injection casting method. Then, their degradation behavior, surface morphology, microstructure, mechanical properties, and biocompatibility have been systematically investigated. The results show that Mg60Zn35Ca5 BMGC has the lowest degradation rate (0.26 mm/year) after 12 weeks of immersion. It has a compressive strength of 807 MPa initially and 154 MPa after 12 weeks of immersion. In this study, all samples are classed as slightly toxic based on the standard ISO 10993-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.