Abstract

As many products are becoming increasingly more reliable, traditional lifetime-based burn-in approaches that try to fail defective units during the test require a long burn-in duration, and thus are not effective. Therefore, we promote the degradation-based burn-in approach that bases the screening decision on the degradation level of a burnt-in unit. Motivated by the infant mortality faced by many Micro-Electro-Mechanical Systems (MEMSs), this study develops two degradation-based joint burn-in and maintenance models under the age and the block based maintenances, respectively. We assume that the product population comprises a weak and a normal subpopulations. Degradation of the product follows Wiener processes with linear drift, while the weak and the normal subpopulations possess distinct drift parameters. The objective of joint burn-in and maintenance decisions is to minimize the long run average cost per unit time during field use by properly choosing the burn-in settings and the preventive replacement intervals. An example using the MEMS devices demonstrates effectiveness of these two models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.