Abstract

Motivated by two real-life examples, this article develops a burn-in planning framework with competing risks. Existing approaches to planning burn-in tests are confined to a single failure mode based on the assumption that this failure mode is subject to infant mortality. Considering the prevalence of competing risks and the high reliability of modern products, our framework differentiates between normal and infant mortality failure modes and recommends degradation-based burn-in approaches. This framework is employed to guide the burn-in planning for an electronic device subject to both a degradation-threshold failure, which is an infant mortality mode and can be modeled by a gamma process with random effect, and a catastrophic mode, which is normal and can be represented with a conventional reliability model. Three degradation-based burn-in models are built and the optimal cutoff degradation levels are derived. Their validity is demonstrated by an electronic device example. We also propose three approaches to deal with uncertainty due to parameter estimation. Algorithmic details and proofs are provided in supplementary material online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.