7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1021/jf062070g
Copy DOIPublication Date: Jan 9, 2007 | |
Citations: 12 |
Soil sorption and dissipation of fluometuron (FLM) and three metabolites, desmethyl fluometuron (DMF), trifluoromethyl phenyl urea (TFMPU), and trifluoromethyl aniline (TFMA), were assessed in conservation tillage soils. In study I, surface Dundee silt loam soils from no-tillage (NT) and reduced-tillage (RT) areas were treated with 14C ring-labeled FLM or TFMA or unlabeled DMF, incubated for 34-42 days, extracted, and analyzed. Mineralization and volatilization of 14C-labeled FLM or TFMA were monitored. In study II, batch sorption assays (solute concentrations 2-50 micromol L-1; 2:1 solution:soil; 18 h) were conducted using various soils from reduced- (RT) and conventional-tillage (CT) areas to determine the relative affinity of FLM and metabolites for soils with differing characteristics. Mineralization of FLM (3%, day 42) or TFMA (4%, day 34) and FLM volatilization (approximately 2%) were low for both soils. FLM and DMF dissipated more rapidly in RT soil than in NT soil. In FLM-treated RT soil, DMF and TFMPU accumulated more rapidly than in NT as FLM degraded. TFMA dissipated rapidly, primarily as nonextractable residues (approximately 70%, day 42) and volatilization (approximately 16%). For all respective soils in study II, sorption of all four compounds was higher for organic C-enriched RT soils than for CT soils, indicating strong relationships between organic C and FLM and metabolite sorption. For either tillage treatment, the percentage sorption was greater for metabolites (e.g., at lowest initial dosing concentration, TFMPU range, 45-91%; DMF range, 45-90%; and TFMA range, 45-98%) than for FLM (RT soils range, 19-65%). Nonsubstituted amino groups likely facilitated sorption to organic C, with nonsubstituted aniline in TFMA having the greatest affinity. NMR spectra of humic acid extracts from NT and CT Dundee soils indicated similar patterns of humic acid functional groups, but the potential capacity for sorption was greater in NT than in CT. The greater capacity for FLM and metabolite sorption in NT soil helps explain their longer persistence.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.