Abstract

Poly(epsilon-caprolactone) (PCL) and its block copolymers with poly(ethylene glycol) (PEG) were prepared by ring-opening polymerization of epsilon-caprolactone in the presence of ethylene glycol or PEG, using zinc metal as catalyst. The resulting polymers were characterized by various analytical techniques such as (1)H NMR, SEC, DSC, IR, X-ray, ESEM, and CZE. PCL/PEG copolymers with long PCL chains presented the same crystalline structure as PCL homopolymer, whereas PEG-bearing short PCL blocks retained the crystalline structure of PEG and exhibited an amphiphilic behavior in aqueous solutions. Degradation of PCL and PCL/PEG diblock and triblock copolymers was realized in a 0.13 M, pH 7.4 phosphate buffer at 37 degrees C. The results indicated that the copolymers exhibited higher hydrophilicity and degradability compared with the PCL homopolymer. Large amounts of PEG were released from the bulk after 60 weeks' degradation. In vitro cell culture studies were conducted on scaffolds manufactured via solid free form fabrication by using primary human and rat bone marrow derived stromal cells (hMSC, rMSC). Light, scanning electron, and confocal laser microscopy, as well as immunocytochemistry, showed cell attachment, proliferation, and extracellular matrix production on the surface, as well as inside the scaffold architecture. Copolymers showed better performance in the cell culture studies than the PCL homopolymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.