Abstract

We investigate the local structural changes in a positive electrode of a lithium ion secondary battery (LiNi 0.8Co 0.15Al 0.05O 2 (NCA) as the active material) associated with charge–discharge cycling at elevated temperatures by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). STEM–EELS spectral imaging reveals the evolution of a NiO-like phase localized near the surface and grain boundary regions after many cycles. The amounts of capacity fading and resistance increase are discussed based on the results of the semiquantitative estimation of NiO-like and other product phases. We also identify the chemical state of lithium in the NiO-like phase substituting for Ni.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call