Abstract

Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) mediated by nanozymes has been extensively studied both experimentally and theoretically, but the low catalytic efficiency due to insufficient H2O2 in the TME and the poor biodegradability of the nanozymes are still main challenges for clinical translation of nanozymes. Herein, we designed a H2O2 self-supplying nanozyme bearing glucose oxidase (GOX) and polyethyleneimine based on a degradable iron-doped phosphate-based glass (FePBG) nanomimic (FePBG@GOX), which can convert endogenous glucose into toxic hydroxyl radicals. The GOX loaded on the nanozyme can effectively consume glucose in tumor cells to produce a large amount of H2O2 to make up for the lack of H2O2 in the TME. Thereafter, enormous hydroxyl radicals, based on a Fenton reaction of FePBG without any exogenous H2O2, are generated to induce severe apoptosis of tumor cells. The nanozyme exhibits enhanced in vitro cytotoxicity in a high-glucose medium than in a low-glucose medium, illustrating sufficient generation of H2O2 by GOX. The excellent in vivo antitumor efficacy is manifested by a high tumor growth inhibition ratio of 94.65% in model mice. Excellent intrinsic biodegradability owing to its phosphate-based glass nature is a remarkable advantage of the prepared FePBG nanozyme over most other reported nanozymes. Big concerns about side effects caused by long-time residence in living organisms are eliminated since it degrades not only in an acid medium but also in a neutral physiological environment. Therefore, this novel strategy of the TME-responsive H2O2 self-supplying nanozyme based on an endogenous cascade catalytic reaction opens up an avenue for designing degradable nanozymes in CDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.