Abstract

We derive an upper bound on the one-way distillable entanglement of bipartite quantum states. To this end, we revisit the notion of degradable, conjugate degradable, and antidegrad-able bipartite quantum states [1]. We prove that for degradable and conjugate degradable states the one-way distillable entanglement is equal to the coherent information, and thus given by a single-letter formula. Furthermore, it is well-known that the one-way distillable entanglement of antidegradable states is zero. We use these results to derive an upper bound for arbitrary bipartite quantum states, which is based on a convex decomposition of a bipartite state into degradable and antidegradable states. This upper bound is always at least as good an upper bound as the entanglement of formation. Applying our bound to the qubit depolarizing channel, we obtain an upper bound on its quantum capacity that is strictly better than previously known bounds in the high noise regime. We also transfer the concept of approximate degradability [2] to quantum states and show that this yields another easily computable upper bound on the one-way distillable entanglement. Moreover, both methods of obtaining upper bounds on the one-way distillable entanglement can be combined into a generalized one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call