Abstract

Precipitation of DNA from a large volume of aqueous solution is an important step in many molecular biology and analytical chemistry experiments. Currently, this is mainly achieved by ethanol precipitation, where a long-term incubation (usually overnight) at low temperature of −20 to −80°C with high salt concentration is required. This method also requires a large quantity of DNA to form a visible pellet and was tested mainly for double-stranded DNA. To improve DNA precipitation, co-precipitating polymers such as linear polyacrylamide has been used. In this work, we report that starch nanoparticles (SNPs) can achieve convenient DNA precipitation at room temperature with a low salt concentration and short incubation time. This method requires as low as 0.01–0.1% SNPs and can precipitate both single- and double-stranded DNA of various lengths. The effect of salt concentration, pH and the crosslinking density of SNPs has been systematically studied. Compared to other types of precipitating agents, SNPs are highly biocompatible and can be degraded by a common enzyme (amylase). This work suggests a novel application of a bio-based material that is prepared in mass production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call