Abstract
Pharmacokinetic properties determine the efficacy of protein therapeutics. The covalent attachment of poly(ethylene glycol) (PEG) extends the half-life of such biologicals to maintain a therapeutically effective concentration over a prolonged period of time and improves administration and compliance. A major obstacle of these polymer-protein conjugates is the chemical stability of the PEG preventing its metabolism and leading to side effects. Instead, we propose the PPEylation, that is, the conjugation of degradable poly(phosphoester)s (PPE) to proteins, in order to generate fully biodegradable polymer-protein conjugates. The structure of the PPEylated protein conjugates was verified with mass spectrometry and size exclusion chromatography. They were compared to structural analogues, except classical, PEGylated proteins, and exhibit comparable bioactivity, but avoiding any nondegradable polymer in the conjugate. We proved the degradation of the protective polymer shell surrounding the conjugate in aqueous environments at physiological conditions by online triple detection size exclusion chromatography and gel electrophoresis. We believe that this research will provide an attractive alternative for future drug design with implications for the clinical use of biologicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.