Abstract
Two approaches to obtain fast-degrading polymer films based on poly(sebacic anhydride) (PSA) are presented, both of which target polymer films with a lower degree of crystallinity than pure PSA homopolymer: first, thin films were prepared from poly(adipic anhydride)/poly(sebacic anhydride) blends at different ratios, and second, films were made from the copolymer poly(salicylic acid-co-sebacic acid). These films are intended as sacrificial layers for self-regenerating functional coatings, for example to regenerate antimicrobial surface activity. The degradation kinetics of these films were analyzed by surface plasmon resonance spectroscopy (SPR). The results of the blends approach indicate that the blend degradation rate was accelerated only in the initial degradation phase (compared to PSA). The degradation kinetics study of the poly(salicylic-acid-co-sebacic acid) film shows that this copolymer degraded faster than poly(sebacic anhydride) initially, releasing antimicrobial salicylic acid in the process. However, its degradation rate slowed down at a mass loss > 60% and approached the PSA degradation curve at longer degradation times. When tested as sacrificial layer in self-regenerating antimicrobial polymer stacks, it was found that the degradation rate was too low for successful layer shedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.