Abstract

To improve tumor destruction and minimize adverse effects to healthy tissues, image-guided radiation therapy (IGRT) has been developed to allow for the accurate delivery of radiation energy to tumor sites facilitated by real-time imaging. Nevertheless, the current IGRT platform still suffers from the limitation of poor tissue contrast, resulting in the incidental irradiation of healthy tissue. Gold nanoparticles (GNPs) have been identified as promising candidates to simultaneously improve both radiotherapy and imaging, thereby improving both the accuracy and safety of IGRT. However, despite much preclinical study, little clinical progress has been made due to uncertainty over GNP toxicity. Herein, we demonstrate the great potential of using GNP-coated liposomes, i.e., Lipogold, which combine the advantages of both large and small nanoparticles into one multifunctional formulation, as an ideal platform for IGRT. When irradiated with low doses (<2 Gy) of therapeutic X-rays, Lipogold induced a significant radiosensitization effect for PC-3 prostate cancer cells, which are moderately radiation-resistant. When imaged with computed tomography (CT), Lipogold was also found to possess consistent X-ray contrast of ∼ 18–23 HU/mg across tube X-ray voltages (70–140 kVp), which could be boosted via the encapsulation of a small-molecule contrast agent containing iodine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.