Abstract

Degradable poly(3,4-ethylenedioxythiophene) (PEDOT) nanocomposites containing sigma cell cellulose (SC) were prepared by in situ polymerization and then characterized by Fourier transform infrared, ultraviolet–visible spectroscopy, and X-ray diffraction methods. Morphology was studied using scanning electron microscopy and transmission electron microscopy. The formation of PEDOT/SC (PESC) composites were examined by thermogravimetric analyses. Results indicated a strong interaction between PEDOT and SC. Temperature-dependent direct current (DC) conductivity within 298–503 K and biodegradable properties of PESC were investigated. Results showed that SC addition significantly improved the temperature-dependent DC conductivity and biodegradability of PESC composites. The increased conductivity of PESC can be explained by the increased mobility of charge carriers caused by increased SC concentration. POLYM. COMPOS., 2015. © 2015 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.