Abstract
Injectable biomaterials are promising as new therapies to treat myocardial infarction (MI). One useful property of biomaterials is the ability to protect and sustain release of therapeutic payloads. In order to create a platform for optimizing the release rate of cardioprotective molecules we utilized the tunable degradation of acetalated dextran (AcDex). We created microparticles with three distinct degradation profiles and showed that the consequent protein release profiles could be modulated within the infarcted heart. This enabled us to determine how delivery rate impacted the efficacy of a model therapeutic, an engineered hepatocyte growth factor fragment (HGF-f). Our results showed that the cardioprotective efficacy of HGF-f was optimal when delivered over three days post-intramyocardial injection, yielding the largest arterioles, fewest apoptotic cardiomyocytes bordering the infarct and the smallest infarcts compared to empty particle treatment four weeks after injection. This work demonstrates the potential of using AcDex particles as a delivery platform to optimize the time frame for delivering therapeutic proteins to the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.