Abstract

Five samples of xNiFe2O4/(1 − x)Ba0.8Sr0.2TiO3 (where x = 0, 0.1, 0.2, 0.3, and 0.4) multiferroic nanocomposites have been successfully fabricated using ball milling combined with heat treatment in a short time. X-ray diffraction patterns indicated the coexistence of two phases, namely, NiFe2O4 (NFO) and Ba0.8Sr0.2TiO3 (BSTO). The average grain size obtained is about 50–100 nm, and NFO and BSTO phases are evenly distributed in the samples. With an increase in the content of NFO, the values characterizing the ferroelectric and ferromagnetic properties improve significantly. Furthermore, the bandgap energy (Eg) value was also strongly reduced. The results on the degradability of methylene orange show that the apparent first-order rate of composites containing NFO with x = 0.4 was found to be k = 0.0228 min−1, which is significantly higher than that of pure BSTO (k = 0.0166 min−1), suggesting that NFO/BSTO multiferroic nanocomposites could be considered as candidate photocatalysts for the degradation of pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call