Abstract
Accelerated glacier and ice sheet retreat and thinning in recent decades has profound consequences for catchment sediment supply with attendant repercussions for nutrient cycling, carbon fluxes and natural resource management. This paper evaluates the impacts of deglaciation on sediment yields from glaciated, deglaciating and recently-deglaciated catchments. It summarises the key characteristics of sediment yields from glaciated catchments to be that they span five orders of magnitude, vary with latitude and are greatest in high-relief and tectonically-active regions. We review the available quantitative data on sediment yields from glaciated catchments and we comment extensively on spatio-temporal variability to understand global to local and inter- and intra-catchment controls. Significant gaps in the available sediment yield data and also in our knowledge of sediment sources, pathways and sinks are identified. We constrain a set of novel approaches by which these gaps could be addressed. In particular, we suggest that the opportunities presented by emerging datasets and analytical methods enabling landcover changes, Digital Elevation Model (DEM) change detection, analyses of connectivity and analyses of sediment plumes are exciting and these approaches should become practical tools for understanding intra- and inter-catchment sediment yields from deglaciating landscapes. We showcase preliminary studies utilising these datasets and they are used to formulate hypotheses designed to stimulate further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.