Abstract

BackgroundDeclines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC‐105/degenerin channel activation produced muscle protein degradation via an unknown mechanism.MethodsGeneration of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function.Results unc‐105 gain‐of‐function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let‐2 mutants that gate the hyperactive UNC‐105 channel. Degradation is not suppressed by interventions suppressing proteasome‐mediated, autophagy‐mediated, or calpain‐mediated degradation nor by suppressors of degenerin‐induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced‐3 or ced‐4. Adult unc‐105 muscles display a time‐dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED‐4, which is sufficient to activate CED‐3 in vitro, are observed in unc‐105 mitochondrial isolations.ConclusionsConstitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call