Abstract

Let $\mathcal{K}$ denote a nonsingular conic in the complex projective plane. Pascal's theorem says that, given six distinct points $A,B,C,D,E,F$ on $\mathcal{K}$, the three intersection points $AE \cap BF, AD \cap CF, BD \cap CE$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal's hexagrammum mysticum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.