Abstract

Consider degenerations of Abelian differentials with prescribed number and multiplicity of zeros and poles. Motivated by the theory of limit linear series, we define twisted canonical divisors on pointed nodal curves to study degenerate differentials, give dimension bounds for their moduli spaces, and establish smoothability criteria. As applications, we show that the spin parity of holomorphic and meromorphic differentials extends to distinguish twisted canonical divisors in the locus of stable pointed curves of pseudocompact type. We also justify whether zeros and poles on general curves in a stratum of differentials can be Weierstrass points. Moreover, we classify twisted canonical divisors on curves with at most two nodes in the minimal stratum in genus three. Our techniques combine algebraic geometry and flat geometry. Their interplay is a main flavor of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.