Abstract

In cats the time course of degeneration following lumbal sympathectomy was studied in the ramus communicans griseus (rcg) and in the nerves to the triceps surae muscle using light and electron microscopic methods. The left lumbar sympathetic trunk including its rami communicantes was removed from L2 to S1 using a lateral approach. The animals were sacrificed between 2 and 48 days after the sympathectomy. Tissue samples were taken (a) one cm proximal to the entrance of the rcg into the spinal nerve, and (b) one cm proximal to the entrance of the nerve into the muscle belly. In the rcg signs of degeneration can already be recognized in the myelinated as well as in the unmyelinated axons 48 h after sympathectomy. The degenerative processes in the axons reach their peak activity at about 4 days p.o. They end a week later. Signs of the reactions of the Schwann cells and of the endoneural cells can first be seen 2 days p.o. They are most pronounced around the 8th day p.o., and last at least up to the third week. Thereafter the cicatrization processes settled to a rather steady state (total observation period 7 weeks). In the muscle nerves the first signs of an axonal degeneration of the sympathetic fibers can be recognized 4 days after surgery. The signs of axonal degeneration are most striking about 8 days p.o. They have more or less disappeared another week later. The reactions of the Schwann cells also start on the fourth day but outlast the degenerative processes by some 8 days. Thus the degenerative and reactive processes in the rcg precede those in the muscle nerves by 2 days early after surgery and by 6 days 3 weeks later. Seven weeks after surgery, fragments of folded basement lamella and Remak bundles with condensed cytoplasm and numerous flat processes are persisting signs of the degeneration. In addition to the differences in time course between the proximal and the distal site of observation, it was also noted that both the axonal degeneration and the reactions of the Schwann cells are more pronounced in the rcg than in the muscle nerve. For example there was abundant mitotic activity in the central endoneural and Schwann cells whereas we could not detect such activity in the periphery.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.