Abstract

Networks of neurons express persistent spontaneous network activity when maintained in dissociated cultures. Prolonged blockade of the spontaneous activity with tetrodotoxin (TTX) causes the eventual death of the neurons. In this study, we investigated some molecular mechanisms that may underlie the activity-suppressed slow degeneration of cortical neurons in culture. Already after 3-4 days of exposure to TTX, well before the neurons die, they began to express markers that lead to their eventual death, 7-10 days later. There was a reduction in glutamate receptor (GluR2) expression, a persistent increase in intracellular calcium concentration, activation of calpain, and an increase in spectrin breakdown products. At this point, blockade of GluR2-lacking GluR1 or calpain (either with a selective antagonist or through the natural regulator of calpain, calpastatin), protected cells from the toxic action of TTX. Subsequently, mitochondria lost their normal elongated shape as well as their membrane potential. Eventually, neurons activated caspase 3 and PUMA (p53 up-regulated modulator of apoptosis), hallmarks of neuronal apoptosis, and died. These experiments will lead to a better understanding of slow neuronal death, typical of neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.